0960-894X(94)00304-1

Acyclic NK₁ antagonists: Replacements for the benzhydryl group.

C. J. Swain, M. A. Cascieri¹, A. Owens, W. Saari, S. Sadowski¹, C. Strader¹, M. Teall, M. B. Van Niel, and B. J. Williams

Department of Medicinal Chemistry, Neuroscience Reseach Centre, Merck, Sharp and Dohme Research Laboratories, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, U.K., ¹ Department of Molecular Pharmacology and Biochemistry, Merck Research Laboratories, Rahway, New Jersey,

Abstract: An exploration of benzhydryl replacements is described. Whilst bridged and fused polynuclear aromatic systems both incur a reduction in affinity it was possible to replace the benzhydryl by a single phenyl ring with only a modest reduction in affinity. In contrast to the analogous diphenylalanyl ethers the binding was also shown to be stereoselective.

The tachykinins are a family of peptides that share the common C-terminal sequence "Phe-X-Gly-Leu-Met-NH2". There are four mammalian tachykinins:- substance P (SP), neurokinin A (NKA), neurokinin B (NKB) and neuropeptide K (an N-terminally extended form of NKA). The biological actions of the tachykinins are mediated through specific cell-surface receptors; three subtypes, designated NK₁, NK₂ and NK₃, were identified on the basis of marked differences in the rank order of potencies of agonist peptides in different tissues, with SP being the preferred agonist for NK₁ receptors, NKA for NK₂ receptors and NKB for NK₃ receptors. The existence of three receptor subtypes has been confirmed by the cloning and sequencing of three distinct genes from mammalian sources^{1,2,3}. A number of non-peptide antagonists of the NK₁ receptor have been reported⁴, with Pfizer reporting the discovery of the first non-peptide substance P antagonist (CP 96,345)⁵.

Recently we reported a novel series of acyclic NK₁ antagonists⁶ derived from ring fission of the corresponding quinuclidine ethers⁷. Whilst the quinuclidines had provided an excellent framework for the exploration of the benzyl ether structure-activity-relationships, the difficulty of synthesis precluded a detailed examination of benzhydryl replacements. The acyclic series however

provided a ready entry into this area of exploration. Results from the quinuclidine series suggested that only one of the aryl rings of the benzhydryl was essential for high affinity⁸. In order to investigate this hypothesis a variety of alternative aryl systems were prepared and evaluated.

All the analogues were prepared (Scheme 1) by reduction of the corresponding amino acids (1a-i); subsequent Boc-protection of the amino alcohol (2a-i) followed by alkylation and deprotection afforded the desired benzyl ethers (3a-i). The amino acids were either commercially available (1d,g,h,i), or prepared by alkylation of dimethyl acetamidomalonate followed by hydrolysis and decarboxylation (1b,c,e,f), or as described previously (1a)⁶.

Scheme 1

Br
$$i,ii,iii$$
 H_2N CO_2H iv H_2N CH_2OH v R $(1a-i)$ $(2a-i)$

Reagents: i) Dimethylacetamidomalonate, THF, NaH; ii) NaOH; iii) Heat ; iv) LiAlH $_4$, THF, reflux; v) Boc $_2$ O, DMAP, CH $_2$ Cl $_2$; vi) NaH, DMF, 3,5-dimethylbenzyl bromide; vii) MeOH,HCl

Efforts to constrain the benzhydryl group met with limited success (Table 1), replacement by the dibenzoazepines (1b) or (1c) resulted in a 10 fold loss in affinity, perhaps reflecting steric constraints. Deletion of one of the phenyl rings (1d) resulted in a 50 fold loss in affinity possibly due to the increased conformational flexibility. Introduction of fused aromatic rings (1e, 1f or 1g) resulted in a further reduction in affinity. However, it was possible to replace the benzhydryl by a single phenyl ring without the linking methylene (1h) with only a 5 fold reduction in affinity, all the activity residing in the (S) enantiomer (1h). This compound is a selective NK₁ antagonist having negligible affinity at either NK₂ or NK₃ (>10,000 nM).

These results are consistent with the hypothesis that only one of the rings of the benzhydryl is involved in ligand binding, and that the second ring acts as a conformational anchor. Further results supporting this hypothesis will be published in subsequent communications.

Table 1: Binding Affinity of NK_1 antagonists determined from inhibition of [^{125}I] substance P binding to the hNK_1 receptor in CHO cells

H_N_O Me		
Number	Me R ^a	1C ₅₀ (nM) ^b
1a	Ph Ph	9.3 ± 6.2
1 b		93 ± 5
1c		80 ± 8
1d		483 ± 165
1e		1160 ± 481
1f		2333 ± 1027
1g	O _R	2333 ± 850
1h 1i	S-Enantiomer R-Enantiomer	55 ± 4 2500 ± 408

^a All compounds are racemic unless stated otherwise

^b All results are the mean of three determinations⁹

Furthermore, in contrast to the diphenylalanyl ethers in which both enantiomers display similar affinity for the NK₁ receptor⁶, the observed enantioselectivity is in accord with that observed for both the amines and ethers in the quinuclidine series^{5.8} with the S-enantiomer showing the highest affinity.

References

- 1) Y. Yokota, Y. Sasai, K. Tanaka, T. Fujiwara, K. Tsuchida, R. Shigemoto, A. Kakizuka, H. Ohkubo and S Nakanishi, *J. Biol. Chem.* <u>264</u>, (30), 17649, 1989
- 2) Y. Masu, K. Nakayama, H. Tamaki, Y. Harada, M. Kuno and S. Nakanishi, *Nature*, **329**, 836, (1987)
- 3) R. Shigemoto, Y. Yokota, K. Tsuchida, and S. Nakanishi, *J. Biol. Chem.* <u>265</u>, (2), 623, 1990.
- 4) C.A. Maggi, R. Patacchini, P. Rovero, and A. Giachetti, *J. Auton. Pharmacol*, 13, 23, 1993
- 5) R. M. Snider, J. W. Constantine, J. A. Lowe, III, K. P. Longo, W.S. Lebel, H. A. Woody, S.E. Drozda, M.C. Desai, F.J. Vinick, R. W. Spencer and H-J. Hess, *Science*, **251**, 435, 1991.
- 6) B.J. Williams, M. Teall, J. McKenna, C.J. Swain M.A. Cascieri and S. Sadowski, *Bioorganic and Medicinal Chemistry Letters*, Accepted for publication
- 7) E. M. Seward, S. Owen, V. Sabin, C. J. Swain, M.A. Cascieri, S. Sadowski, C. Strader. *Bioorganic and Medicinal Chemistry Letters* **3**, 1361, 1993.
- 8) C. J. Swain, E. M. Seward, V. Sabin, S. Owen, R. Baker, M. A. Cascieri, S. Sadowski, C. Strader, R. G. Ball, *Bioorganic and Medicinal Chemistry Letters*. **3**, 1703, 1993.
- 9) M.A. Cascieri, E. Ber, T.M. Fong, S. Sadowski, A. Bansal, C. J. Swain, E. Seward, B. Francis, D. Burns, C.D. Strader, *Mol. Pharmacol.* **42**, 458, 1992.

(Received in Belgium 15 May 1994; accepted 30 June 1994)